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Can quantum mechanics and supersymmetric quantum
mechanics be the multidimensional Ermakov theories?∗

R S Kaushal† and D Parashar
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India

Received 30 May 1995

Abstract. For both the Schr̈odinger equation in quantum mechanics and the Riccati-type
equation satisfied by the superpotential in supersymmetric quantum mechanics, we explicitly
show that there exists an Ermakov-type functional invariant with respect to the space variable.
An energy-like interpretation is suggested for this invariant.

More than a century ago, Ermakov [1] originally suggested a connection between the
solutions of a pair of coupled differential equations. In recent years, Ray and Reid in
a series of papers [2–6] and several other authors [7–12] have exploited such a connection
in the studies of time-dependent (TD) harmonic oscillators and with different degrees of
generalizations. During the course of their studies, Ray and Reid have evolved a method of
constructing the invariant for one-dimensionalTD systems known as the Ermakov method
and, accordingly, the invariant so constructed as the Ermakov invariant. While mathematical
aspects of these(1 + 1)-dimensional Ermakov systems have been studied by Athorne [13]
at a somewhat deeper level, Ermakov-like systems in(2 + 1) dimensions have also been
investigated [14] recently at the classical level.

On the other hand, Korsch and his co-workers [15, 16], and subsequently Lee [17],
noticed an interesting and strikingsimilarity between the classical equation of motion for
a TD harmonic oscillator and the Schrödinger equation for an arbitrary potential. This has
further enhanced the domain of applicability of the Ermakov theory to various physical
problems.

It is now well known that aTD harmonic oscillator in(1 + 1) dimensions described by

ẍ(t)+ ω2(t)x(t) = 0 (1)

admits an Ermakov invariant

l =
(
x

ρ

)2

+ c−2(ẋρ − xρ̇)2 (2)

where the auxiliary variable,ρ(t), satisfies the equation

ρ̈(t)+ ω2(t)ρ(t) = c2/ρ3(t). (3)
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Korsch and co-workers [15, 16] and also Lee [17] have made use of the existence of
similarity between equation (1) and the Schrödinger equation

ψ ′′(x)+ k2(x)ψ(x) = 0 (4)

wherek2(x) = 2m(E−V (x)/h̄2. In fact, they merely identifyx(t), ω(t) andρ(t) with the
wavefunctionψ(x), local wavenumberk(x) andA(x), respectively, in anad hoc manner
and accordingly write the form of the Ermakov invariant as

l =
(
ψ

A

)2

+ c−2(ψ ′A− ψA′) (5)

with A(x) satisfying

A′′(x)+ k2(x)A = c2/A3(x). (6)

Further, a connection between the solution of equation (4) and that of equation (6) (the
latter is known as Milne’s equation in the literature [15, 18]) obtained as

ψ(x) = NA(x) sin

(
c

∫ x

A−2(x) dx − δ

)
(7)

leads to a new quantization rule

c

∫ ∞

−∞
A−2 dx = (n+ 1)π (n = 0, 1, 2, . . .) (8)

which is called the Milne quantization condition. Applications of these results to a number
of physical problems are discussed by Korsch and coworkers and Lee. Equations (4)–
(6) define a multidimensional Ermakov system and the invariant (5) is termed [17] as the
configurational space Ermakov invariant.

The purpose of the present paper is simple; however, it is nevertheless intriguing enough
to warrant a serious investigation. In fact, what we shall show here is that thead hoc
identification ofx(t), ω(t) andρ(t) with ψ(x), k(x) andρ(x), respectively, as has been done
in the past [15–17] to establish quantum mechanics (QM) as a multidimensional Ermakov
theory, wasnot at all necessary. Instead, a particular class of solutions of the Schrödinger
equation (4) might demand the existence of not only an Ermakov-type invariant but also the
Milne quantization condition (8) in a natural way rather than thead hocidentification of the
variables. Also, the Riccati-type equation satisfied [19, 20] by the superpotential in the case
of supersymmetric quantum mechanics (SUSYQM) follows the Ermakov-type description in
a natural way, as will be emphasized later. In spite of the fact that (i) Ermakov theory
has now been known for more than 110 years, (ii) traditional (Schrödinger)QM is already
close to 70 years old and (iii)SUSYQM has also been growing for the past decade, strangely
enough these transparent connections between theQM or SUSYQM and Ermakov theory have
remained unnoticed thus far to the best of our knowledge. As a matter of fact, such solutions
in QM or SUSYQM may turn out to be much richer than the previously known ones, as far as
the physical content in their structure is concerned. Even the well knownWKB [21] (or for
that matter supersymmetricWKB [22]), quantization rule could be studied as a special case of
the Milne quantization condition, if the latter is derived independently of the corresponding
classical description.

Independent of the form ofk2(x) (or equivalently that ofV (x) appearing through
k2(x) = 2m(E−V (x))/h̄2), let us make an ansatz for the solution of the time-independent
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Schr̈odinger equation (4) as†
ψ(x) = N1A(x) exp(iS(x)). (9)

Use of this form in (4) yields

A′′ + i(AS ′′ + 2S ′A′)+ A[k2(x)− S ′2] = 0. (10)

On equating the real and imaginary parts of this equation separately to zero, one finds

A′′ + A[k2(x)− S ′2] = 0 (11a)

AS ′′ + 2S ′A′ = 0. (11b)

Here, equation (11b) can be solved immediately to give

S ′ = c/A2 or S = c

∫
A−2 dx − δ (12)

whereδ is a constant of integration. Using this form ofS ′ in equation (11a), one arrives at
the same equation as (6) forA(x). Now eliminatingk2(x) from equations (6) and (4) (as
one does in the method of Ray and Reid [2–6]) one immediately obtains the Ermakov-type
invariant

K = c−2(ψ ′A− ψA′)2 +
(
ψ

A

)2

(13)

which is of the same form as (5) withI replaced byK. This replacement is mainly to
differentiate it from the corresponding classical case (cf equation (2)). In fact, the functional
formK here is a constant with respect to the space evolution of the system, i.e. dK/dx = 0.
Also note that for certain restrictions onψ(x), the ansatz (9) along with (12) gives rise to
the connection (7) betweenψ(x) andA(x) and subsequently the other connections [15]
between the general solutions of (6) and (4). Further, the Milne quantization condition
(8) follows as before [15, 17] by just imposing the requirement that the wavefunctions be
bounded at both ends of the interval.

It is well known [19, 20] that in the supersymmetric formulation of quantum mechanics
the superpotential,W(x), is derived from the ground-state wavefunction90 as

W(x) = −9 ′
0/90 or 90(x) = N0 exp

(
−

∫ x

dy W(y)

)
. (14)

With a knowledge of90 and the ground-state energyE0, one can factorize the Hamiltonian
in the form

2H = − d2

dx2
+ V (x) = A+A+ 2E0 (15)

whereA = d/dx + W andA+ = −d/dx + W . The pair of Hamiltonians related by the
supersymmetry are

2H± = − d2

dx2
+ Vε (16)

where, for convenience, we have usedε = ±, andVε is given by

Vε(x) = W 2(x)+ εW ′(x) (17)

† Note that the same form of the Schrödinger equation (as equation (4)) can be retained for the central
potentials in the three-dimensional case in terms of the reduced form of the Schrödinger equation and with
V (x) → V (r)+ `(`+ 1)h̄2/2mr2 (cf [21]).
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andH−90 = 0. Conversely, for the given form ofV (x) (or of Vε(x) for that matter) one can
determineW(x) and consequently the ground state90 by solving the Riccati equation (17).
It may be mentioned that inSUSYQM an equation exactly similar to (17) also arises [20]
when one investigates the excited states of the system for the potentialV (x). In that case,
however, there also appears a constant term in (17) which can be accounted for through
a redefinition ofVε(x). Therefore, the nature of the basic equation to be solved remains
essentially the same, viz.,

dW

dx
= εVε(x)− εW 2. (18)

As a matter of fact, one can recover the same form of the Schrödinger equation as (4)
from (18) just by using the Riccati transformation [23]W(x) = −9 ′

0/90, which happens
to be the same as the defining equation (14) for the superpotentialW(x) in the present case.
In other words, equation (18) represents an alternative form of the Schrödinger equation.
Hence, whatever we have discussed earlier in connection with quantum mechanics and
Ermakov theory, the same arguments remain valid here for theSUSYQM case. Equations
of the type (4), (13) and (6) can easily be derived and consequently implySUSYQM as a
multidimensional Ermakov theory.

We would like to conclude with the following remarks. One of the interesting aspects
of the present work is to emphasize the fact that the conventionalWKB approximation [21]
turns out to be a special case of the ansatz (9). In fact, by assuming the slow variation of
k(x) with respect tox and subsequently neglectingA′′ as compared toA′, from equation
(11) one arrives at

S ′ = k(x) or S =
∫ x

k(x) dx + δ1

andA = A0/
√
S ′. As a result it is not difficult to realize that the standardWKB quantization

rule is obtained as a special case of the Milne quantization condition (8). The latter is found
[15, 24] to have a superior numerical stability forn � 1 over theWKB results.

In view of the fact that (i) Ermakov invariants, basically, are the angular momentum-
type invariants (cf equation (2) or (3)) and (ii) at the classical levelI (cf equation (2)) is
interpreted [12] as the angular momentum in a projected two-dimensional plane, we suggest
here an energy-like interpretation forK (or for I ). As far as equation (13) is concerned
one can look at this form in two different ways.

(1) Define a new functionφ = ψ/A, which allows us to write (13) as

K = c−2A4(φ′)2 + φ2. (19)

By a suitable transformation, thex-dependence of the coefficientA4 of φ′2 in (19) can
be transferred to the coefficient ofφ2, thereby implyingK as anx-dependent harmonic
oscillator-like Hamiltonian in theφ variable.

(2) In view of the several generalizations of the Ermakov systems at the classical level,
particularly by Ray and Reid [4, 5], one can easily write the functional form (13) at the
quantum level as

K = L2
fn

2I + f (ψ,A) (20)

whereLfn is the angular momentum-like quantity defined in function space, i.e. in theψ–A
plane, andI can be identified with a moment of inertia-like quantity. On the other hand,
the energy of a physical system is always defined as

E = P 2

2m
+ V (x) (21)
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where symbols have their usual meanings. While a comparison of (20) and (21) shows a
perfect analogy betweenK andE for each kinetic and potential terms, mathematically both
K andE are the conserved quantities belonging to different spaces. Thus,K again appears
as an energy-like invariant of the system but in a different space.

To summarize, we mention that both the Schrödinger equation inQM and Riccati
equation satisfied by the superpotential inSUSYQM clearly have been shown to have their
basis in Ermakov theory which was discovered in the last century. In fact, such connections
appear more in a natural fashion in the present work than in anad hocstyle employed by
others, by way of demanding the existence of a functional invariant with respect to the
space variable. No doubt the detailed physical understanding of this invariant (at both
classical and quantum level) requires further investigation; the energy-like interpretation
advanced here may well be a plausible one. Finally, it is imperative to emphasize that the
word ‘multidimensional’ in this work refers to the Hilbert spacevis-à-vis the Schr̈odinger
equation and it is not to be confused with the spatial degrees of freedom.
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